|
*Số chính phương không bao giờ tận cùng là 2, 3, 7, 8. Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn. Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2;số chính phương lẻ khi chia 8 luôn dư 1. Điều này được sử dụng nhiều trong việc giải các bài tập. Ngoài ra, công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b)* |
|